¾çÇé¼ò½é
Òª¸ã»úÆ÷ѧϰÀë²»¿ªÊýѧ£¬±¾ÎÄ·ÖÏíÒ»±¾À´×Ô±öϦ·¨ÄáÑÇ´óѧ¼ÆËã»úϵ½ÌÊÚJean GallierÖ÷±àµÄÃæÏò»úÆ÷ѧϰµÄ¡°ÊýѧȫÊ顱£¬ÄÚÈݺ¸ÇÏßÐÔ´úÊý¡¢¸ÅÂÊͳ¼Æ¡¢ÍØÆËѧ¡¢Î¢»ý·Ö¡¢×îÓÅ»¯ÀíÂÛµÈÃæÏòMLµÄÊýѧ֪ʶ£¬¹²¼Æ1900ÓàÒ³£¬¿ìÀ´ÏÂÔØÊղذɣ¡À´Óë AI ´ó¿§Ò»Æð²ÎÓëÌÖÂÛ°É¡«
»úÆ÷ѧϰ£¬ÌرðÊÇÉî¶ÈѧϰÀë²»¿ªÊýѧ£¬Éî¶ÈѧϰµÄËã·¨ºÍÄ£Ð͵Ĵ£¬¶¼ÐèÒªÖØÒªµÄÊýѧ¹¤¾ß×÷Ϊ֧³Å¡£²»¹ÜÊǶԻúÆ÷ѧϰÑо¿ÈËÔ±£¬»¹ÊÇÁ¢Ö¾×ßÉÏ»úÆ÷ѧϰºÍAIÑо¿Ö®Â·µÄѧÉúÀ´Ëµ£¬´òºÃ¼áʵµÄÊýѧ»ù´¡ÊǶ¼ÖÁ¹ØÖØÒªµÄ¡£
ÔÚÏÖÐеÄÖ÷Òª»úÆ÷ѧϰ½Ì³ÌÖУ¬»ù±¾É϶¼»áÔÚÊéÖÐ×ʼ¸ø³ö±ØÒªµÄÊýѧ֪ʶ£¬µ«Ò»°ã¶¼±È½Ï¼òÂÔ£¬ÕâЩ½Ì²ÄÒ»°ãĬÈ϶ÁÕßÒѾ¾ß±¸Á˱ØÒªµÄÊýѧ֪ʶ¡£
¶ÔÓÚûÓÐÕÆÎÕÕâЩ֪ʶµÄ¶ÁÕßÀ´Ëµ£¬ºÜ¶àÈËÐèҪȥѧϰ¹®¹Ì£¬ÉõÖÁÔÚijЩѧ¿ÆÉÏ´ÓÁ㿪ʼѧϰ¡£»úÆ÷Ñ§Ï°Éæ¼°µ½µÄÊýѧѧ¿Æ±³¾°ÖªÊ¶±È½Ï¹ã·º£¬³ýÁ˱ØÐëÕÆÎÕµÄÏßÐÔ´úÊý¡¢¸ÅÂÊͳ¼ÆÖ®Í⣬»¹ÐèÒªÍØÆËѧ¡¢Î¢»ý·Ö¡¢×îÓÅ»¯ÀíÂÛµÈѧ¿ÆÖªÊ¶¡£
±öϦ·¨ÄáÑÇ´óѧ¼ÆËã»úºÍÐÅϢѧ½ÌÊÚJean Gallier¾ÍÓëËûÈ˺Ï×÷±à׫ÁËÒ»²¿¡°ÃæÏò¼ÆËã»úºÍ»úÆ÷ѧϰµÄÊýѧȫÊ顱¡£Õâ×ÅʵÊDZ¾´ó²¿Í·£¬È«Êé¹²¼Æ1900¶àÒ³£¬º¸ÇÁË»úÆ÷ѧϰºÍÉî¶ÈѧϰÏà¹ØµÄ¶à¸öÊýѧѧ¿Æ£¬°üÀ¨ÏßÐÔ´úÊý£¬ÍØÆËѧ¡¢Î¢·Ö¼ÆËãºÍ×îÓÅ»¯ÀíÂ۵ȡ£Õâ±¾ÊéµÄPDFµç×Ó°æÏÖÒѷųö£¬ÐèÒªµÄ¶ÁÕß¿ÉÒÔÃâ·ÑÏÂÔØ¡£
È«Êé¹²·Ö¾Å´ó²¿·Ö£¨²»°üÀ¨¸½Â¼£©£¬¹²1900ÓàÒ³¡£ÒÔϽáºÏ×ÜĿ¼£¬¶Ô±¾ÊéÕ½ÚÄÚÈݽøÐмòÒª½éÉÜ£º
µÚÒ»²¿·Ö£ºÏßÐÔ´úÊý¡£±¾²¿·Öƪ·ù×£¬¹²23Õ£¬750ÓàÒ³
µÚ¶þ²¿·Ö£ºÏßÐÔÓëÉäÓ°¼¸ºÎ£¬¹²3Õ£¬170ÓàÒ³¡£
µÚÈý²¿·Ö£º
Ë«ÏßÐÔÐÎʽ¼¸ºÎ£¬¹²3Õ£¬Ô¼100Ò³
µÚËIJ¿·Ö£ºAlgebra: PID¡¯s, UFD¡¯s, NoetherianRings, Tensors, Modules over a PID, Normal Forms£¬¹²7Õ£¬Ô¼280Ò³
µÚÎ岿·Ö£º
ÍØÆËѧºÍ΢»ý·Ö£¬¹²3Õ£¬Ô¼130Ò³
µÚÁù²¿·Ö£º×îÓÅ»¯ÀíÂÛ³õ²½£¬¹²4Õ£¬Ô¼60Ò³
µÚÆß²¿·Ö£ºÏßÐÔÓÅ»¯£¬¹²4Õ£¬Ô¼100Ò³
µÚ°Ë²¿·Ö£º·ÇÏßÐÔÓÅ»¯£¬¹²5Õ£¬Ô¼250Ò³
µÚ¾Å²¿·Ö£º»úÆ÷ѧϰӦÓ㬹²3Õ£¬Ô¼100Ò³
µÚÊ®²¿·Ö£º¸½Â¼£¬¹²2Õ£¬Ô¼30Ò³
ÁíÍ⣬¸ø´ó¼ÒÍÆ¼ö·ÝÀ´×Ô×Ö½ÚÌø¶¯´óÀеÄËã·¨½ø½×Ö¸ÄÏ£¬¾Ý˵Óв»ÉÙС»ï°é¿¿Õâ·ÝÖ¸Äϳɹ¦ÕÆÎÕÁËËã·¨µÄºËÐļ¼ÄÜ£¬Äõ½ÁË BAT offer¡£Ï£Íû¶Ô´ó¼ÒÓаïÖú¡£
×ÊÁÏÊÇ 70K Star µÄ¡¶labuladong µÄË㷨С³¡·£¨×÷Õß labuladong£©¡£
ÏÈÀ´¸øÄãÃÇ¿´¿´ÀïÃæ¾ßÌå¶¼ÓÐÄÄЩÄÚÈÝ£º